COMPUTING GEOMETRIC MINIMUM-DILATION GRAPHS IS NP-HARD
نویسندگان
چکیده
منابع مشابه
Computing Geometric Minimum-Dilation Graphs Is NP-Hard
We prove that computing a geometric minimum-dilation graph on a given set of points in the plane, using not more than a given number of edges, is an NP-hard problem, no matter if edge crossings are allowed or forbidden. We also show that the problem remains NP-hard even when a minimum-dilation tour or path is sought; not even an FPTAS exists in this case.
متن کاملComputing a Minimum-Dilation Spanning Tree is NP-hard
Given a set S of n points in the plane, a minimumdilation spanning tree of S is a tree with vertex set S of smallest possible dilation. We show that given a set S of n points and a dilation δ > 1, it is NP-hard to determine whether a spanning tree of S with dilation at most δ exists.
متن کاملMinimum-Dilation Tour (and Path) is NP-hard
We prove that computing a minimum-dilation (Euclidean) Hamilton circuit or path on a given set of points in the plane is NP-hard.
متن کاملMinimum Maximal Matching Is NP-Hard in Regular Bipartite Graphs
Yannakakis and Gavril showed in [10] that the problem of finding a maximal matching of minimum size (MMM for short), also called Minimum Edge Dominating Set, is NP-hard in bipartite graphs of maximum degree 3 or planar graphs of maximum degree 3. Horton and Kilakos extended this result to planar bipartite graphs and planar cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in...
متن کاملMinimum Bisection Is NP-hard on Unit Disk Graphs
In this paper we prove that the Min-Bisection problem is NP-hard on unit disk graphs, thus solving a longstanding open question.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Geometry & Applications
سال: 2010
ISSN: 0218-1959,1793-6357
DOI: 10.1142/s0218195910003244